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Equation of state and transport coefficients for dense plasmas

C. Blancard and G. Faussurier
Département de Physique The´orique et Applique´e, CEA/DAM Ile-de-France, Boiˆte Postale 12, F 91680 Bruye`res-le-Chaˆtel, France
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We hereby present a model to describe the thermodynamic and transport properties of dense plasmas. The
electronic and ionic structures are determined self-consistently using finite-temperature density functional
theory and Gibbs-Bogolyubov inequality. The main thermodynamic quantities, i.e., internal energy, pressure,
entropy, and sound speed, are obtained by numerical differentiation of the plasma total Helmholtz free energy.
Electronic electrical and thermal conductivities are calculated from the Ziman approach. Ionic transport coef-
ficients are estimated using those of hard-sphere system and the Rosenfeld semiempirical ‘‘universal’’ corre-
spondence between excess entropy and dimensionless transport coefficients of dense fluids. Numerical results
and comparisons with experiments are presented and discussed.
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I. INTRODUCTION

Early theoretical study of matter at high density and h
temperature was aimed at understanding pressure ba
and energy flow in stellar interiors@1#. Since the 1980s, ther
has been a growth of interest in the atomic properties of
dense plasmas, motivated by laboratory experiments inv
ing high-power pulsed lasers. More recently, the interest
been enhanced by the possibility of producing plasmas n
solid density and at temperatures in the range 0.1–1
with ultrashort duration laser pulse. Some experiments h
also been carried out to measure the electrical resisti
@2–4# or the optical reflectivity@5,6# of strongly coupled
plasmas@7#. In this field, combined pressure, electrical res
tivity, and internal energy variation measurements of wa
dense aluminum and titanium plasmas have been rece
performed@8,9#.

Though much is known about the equation of state a
transport coefficients for most materials under many con
tions @10#, there are domains where common theories
questionable or way out of their range of validity@11,12#.
This is typically the case for strongly coupled plasmas in
density-temperature plane between solid and plasma ca
warm dense matter@13#. This equilibrium thermodynamic
regime can be encountered in planetary interiors, cool de
stars, and in laboratory experiments. The knowledge of eq
tion of state of such strongly coupled plasmas, character
by Coulomb potential energy between plasma partic
greater than their average kinetic energy, is therefore cru
and challenging. But this task is extremely difficult
achieve due to the complex and subtle coupling betw
ionic and electronic structures. Indeed, any model that is s
posed to describe dense plasmas, and warm dense mat
particular, should solve the following problems@14#. It
should be able to calculate the average electron-density
file around an ion in the plasma, determine a self-consis
average ionization of the plasma, compute the interac
between ions, the total Helmholtz free energy of the plas
and the largest possible set of ionic and electronic trans
coefficients. It should also be valid in the high-density a
high-temperature domain where the Thomas-Fermi appro
is known to work well@15#, and be robust enough to ensu
1063-651X/2004/69~1!/016409~15!/$22.50 69 0164
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a transition, as smooth and physically correct as possi
with solid state physics@16#. Moreover, it should beab initio
and have a high degree of intrinsic consistency. Finally,
design should be flexible and modular enough in order to
easily improved and modified through the implementation
new physics without having to build another model fro
scratch. Clearly, the model should get rid of the stand
simplified descriptions of ionic distribution~isolated ion
sphere, uniform positive background, perturbation theo
pseudopotential approach, and linear response theory, . . . !.
This is the cornerstone of the whole issue. The description
dense plasmas is a nonlinear and coupled problem, in w
it is acknowledged that neglecting altogether the details
ion correlations and their effect on the thermodynamics
the model will one day lead to failure, one way or anoth
Indeed, the ionic contribution to the equation of state is u
derstood to be relatively small in itself, especially in highZ
materials, and when compared with the electronic part. Ho
ever, their indirect influence in providing boundary cond
tions for the electronic equations can be much more sign
cant, and may have an important impact due to the str
lever arm effect@17#.

This document presents a first-principles approach
provides some answers to the aforementioned problems.
model is based on the neutral pseudoatom~NPA! concept
@18#. This means that the plasma can be considered a
effective classical system of virtual neutral particles, i.e.
collection of NPA interacting via an interatomic effectiv
pair potentialF. Electrons of the NPA satisfy a Schro¨dinger
equation with an effective potentialVe f f . Ve f f andF expres-
sions are established using a variational principle based
the Gibbs-Bogolyubov inequality~GBI! @19#. This means
that we find the best one-electron Hamiltonian, in the se
of the Gibbs-Bogolyubov inequality, i.e., the best NPA on
electron density, to represent the original many-body Ham
tonian of the overall electron and bare nucleus neutral sys
@20#. BothVe f f andF are determined by the electronic stru
ture and the ionic distribution of the plasma. In order for t
model to be computationally tractable, the density functio
theory ~DFT! within the local density approximation~LDA !
is used to estimate the exchange-correlation effects, and
Gibbs-Bogolyubov inequality is again employed to look f
©2004 The American Physical Society09-1
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the best reference system, i.e., one component plasma~OCP!
or hard-sphere~HS! systems, to get the pair distributio
function of the ionic subsystem from the interatomic effe
tive potentialF @21–23#. In Sec. II, the general formalism i
proposed. Mathematical details and additional developm
are given in the appendixes. Numerical results and comp
sons to measurements are presented in Sec. III. Section
the conclusion.

II. FORMALISM

In this section, we derive the expression of the total f
energy of the plasma using finite-temperature density fu
tional theory, within the local density approximation, a
the powerful variational approach based on the Gib
Bogolyubov inequality. Viewing the plasma as a collection
identical neutral pseudoatoms, the variational method
ables one to find the optimum one-electron Hamiltonian t
gives the best approximation of the original many-body to
Hamiltonian of the plasma. We thus naturally find the e
pressions of the effective electron-ion and ion-ion potent
that describe the electron-ion and ion-ion interactions ins
the system. The NPA electronic structure is found solvin
Schrödinger equation with the relevant effective electron-i
potential. The ionic structure is found using the GBI to e
tablish a mapping between the effective ion-ion system
the hard-sphere or the one-component plasma refer
systems. The knowledge of the total free energy of
plasma gives access to the main thermodynamic quant
of interest by numerical differentiation. We then assume t
the Ziman formalism can be used to calculate the electro
electrical and thermal conductivities of the system. We a
provide a means of estimating ionic transport coefficie
from either the Rosenfeld semiempirical ‘‘universa
corresponding-state relationships based on the reduced
figurational entropy, or simply using the reference syst
transport coefficients.

A. Derivation of the total free energy of the system

Let us consider a plasma containingNI nuclei of nuclear
chargeZI of a single element andNIZI electrons in a volume
V. The whole system is supposed to be neutral, homo
neous, isotropic, and in thermodynamic equilibrium at te
perature T. The ion densityr I5NI /V is related to the
Wigner-Seitz radius aWS by the standard formula
(4p/3)aWS

3 r I51. 1/r i is the volume occupied by on
nucleus. Inverse temperatureb is equal to 1/kBT, wherekB
is the Boltzmann constant. The Hamiltonian of this system
written as follows:

Hsys5(
j

Pj
2

2M
1VII 1He , ~1!

whereVII is the bare nucleus Coulomb potential, i.e.,

VII 5(
i . j

ZI
2e2

uRi2Rj u
, ~2!
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andHe the electron Hamiltonian, i.e.,

He5(
j

pj
2

2m
1(

i . j

e2

ur i2r j u
2(

i , j

ZIe
2

ur i2Rj u
. ~3!

M (m),P(p) are nucleus~electron! mass and momentum, re
spectively.R(r ) is the nucleus~electron! vector radius. The
nucleus ~electron! indices run between 1 andNI (ZINI).
When there is no ambiguity, the sum limits will be mad
implicit for conciseness.

We invoke the Born-Oppenheimer approximation,
which the nuclear and electronic motions are separated.
can treat the electrons quantum mechanically and the nu
classically. In other words, the time scale that is necess
for electrons to adapt to a nucleus configuration change
der the influence of internal forces is much shorter than
time scale required for nuclei to go from one configuration
another one under the influence of the same forces. T
approximation is also known as the adiabatic approximati
We can thus integrate out the electronic coordinates a
from the nuclear ones, i.e., the trace over the electronic
grees of freedom must be performed assuming a given
fixed nucleus configuration. Of course, one must then tr
over the nucleus degrees of freedom to arrive at the fi
statistical average of the observable of interest. From
electronic point of view, the third term of the right-hand sid
of Eq. ~3! acts as an external potential due to the electrost
interaction between electrons and nuclei. From the nucl
viewpoint, the trace over the electronic degrees of freed
eliminates the direct two-body electrostatic interaction b
tween electrons and nuclei, and produces an effective i
rect interaction between nuclei. The nuclei can thus be s
as a classical gas of particles interacting through pairw
electrostatic interaction and immersed in an external fi
that causes them to interact through an effective many-b
interaction. As a result, the quantum mechanical elect
problem is solved using purely classical forces. Howev
since electrons must obey the Pauli exclusion principle,
satisfy Fermi-Dirac statistics, the classical mechani
nucleus problem is solved using both classical and quan
forces. To sum up, starting from a two-component syste
i.e., electrons and nuclei, it is possible to reduce the orig
problem to a one-component plasma by eliminating el
tronic degrees of freedom. Yet the underlying electron pr
ence manifests itself through the effective many-body int
action, which adds to the electrostatic interaction betwe
nuclei. Then, depending on the nature of material and
thermodynamic conditions, we could face an amazing a
huge diversity of physical situations and phenomena.

We propose anab initio model to describe self-
consistently the electronic and ionic structures of plasm
This approach should be in agreement with the Thom
Fermi theory at high density and should give a reasona
matching with the methods originally developed to descr
low-temperature condensed matter, i.e., methods base
pseudopotential and perturbation theories or quantum
lecular dynamics approaches. Of course, comparisons
relevant and discriminant experiments are essential for t
ing the overall theoretical framework. So, returning to Eq
9-2
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~1!–~3!, our main problem is to choose a simple, robu
predictive, and computationally tractable strategy to elim
nate the electronic degrees of freedom, in order to ach
the reduction of our system to a one-component plasma.
most natural idea involves using the fruitful approach e
ployed frequently in various fields such as atomic phys
molecular physics, or nuclear physics, i.e., to look for t
best one-electron HamiltonianĤe0 using the GBI. Our ap-
proach, based on a seminal paper by Kiyokawa@20#, is very
different from the NPA approach enhanced by Perrot@14#,
which involves extending the solid- and liquid-state mod
to plasmas. This method has been shown to lead to a co
tent treatment of the high-temperature fluid phase. Howe
Perrot’s method is not variational but perturbative, and
validity is warranted only if the electronic structure
‘‘simple,’’ in the sense of the simple liquid-metal theory. It
rather delicate to estimate the influence of the neglec
terms in the free energy expansion. Moreover, as stated
the author, complex effects such as molecular- or clus
level formation, which involve charge redistribution an
three~or more! ion interactions cannot be dealt with. This
not the case with our approach, which can be refined to
rich the physical description, if needed.

As is usually the case in statistical mechanics, we hav
decide in which ensembles we are going to treat theNI nu-
clei and theNIZI electrons. Since in the thermodynam
limit, i.e., NI→`, V→`, NI /V5r I5const, results do no
depend on a particular choice, let us choose ensembles
lead to simple and convenient calculations, and which se
close to the physical properties of the systems of inter
According to the adiabatic approximation, it seems norma
treat theNI slow nuclei in the canonical ensemble and t
fast NIZI electrons in the grand canonical ensemble. Let
introduce the nuclear chemical potentialm I , the electron
chemical potentialme , and the electron number operatorN̂e .
Since electrons are treated quantum mechanically,Hsys and
He become operators and should be readĤsys and Ĥe , re-
spectively. The grand potential of the systemVsys is equal to

e2bVsys5ebm INI Tr@e2b(Ĥsys2meN̂e)#, ~4!

where Tr means trace over electronic and nuclear degree
freedom. As for electrons, the trace is performed over
complete Fock space and is noted Tre , whereas for nuclei,
the trace is referred to as TrI and simply read as

TrI$•••%5E dNIRdNIP

NI !h
3NI

$•••%, ~5!

whereh is the Planck constant. Using the adiabatic appro
mation, Eqs.~1!–~3!, and remembering that the nucle
quantities are usual numbers that commute with electron
erators,

e2bVsys5ebm INI TrI H expS 2
b

2M (
j

Pj
22bVII D

3Tre@e2b(Ĥe2meN̂e)#J . ~6!
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The integrations over nuclear momenta can be carried
explicitly, yielding a factor (2pMkBT)1/2 for each degree of
freedom. Introducing the nuclear de Broglie thermal wav
lengthL5(2pb\2/M )1/2 and the free energyFI

id of a per-
fect gas,

e2bFI
id

5E dNIRdNIP

NI !h
3NI

expS 2
b

2M (
j

Pj
2D 5

VNI

L3NINI !
,

~7!

we obtain a more compact equation

e2bVsys5e2bFI
id

1bm INI trI$e
2bVII Tre@e2b(Ĥe2meN̂e)#%.

~8!

In this expression, symbol ‘‘id’’ stands for ideal and trI is a
shorthand notation for

trI$•••%5E dNIR

VNI
$•••%. ~9!

Now, let us find a lower bound toe2bVsys usingĤe0 and
the GBI. Inserting6Ĥe0 nearĤe in Eq. ~8!, using

^$•••%&e05
Tre@e2b(Ĥe02meN̂e)$•••%#

e2bVe0
,

e2bVe05Tre@e2b(Ĥe02meN̂e)#, ~10!

and the well-known property

^e2b(Ĥe2Ĥe0)&e0>e2b^Ĥe2Ĥe0&e0, ~11!

we naturally find that

e2bVsys>e2bFI
id

1bm INI trI@e2bVII 2bVe02b^Ĥe2Ĥe0&e0#.

~12!

Now, let us determine what kind of trial one-electron Ham
tonian we use. In general, some electrons in the system
localized in the neighborhood of a nucleus or cluster of n
clei and occupied bound states. The others are in continu
states. However, let us leave bound states of cluster to
side, i.e., molecularlike orbits in the present work. This is o
first assumption. In other words, there is no overlap of eig
functions between two different atomic sites. The electro
of the system that are trapped and tightly attached to nu
are called bound electrons. The other electrons that mov
the whole space or belong to all nuclei are called delocali
or free electrons. We define an ion as the system consis
of one nucleus and some bound electrons belonging to
However, the density profile of the continuum electrons
not stationary due to the nucleus motion. So, these elect
tend to pile up near the nuclei in the sense of the adiab
approximation, and shield or screen the ionic charges. Th
fore, it is physically reasonable to consider the system co
prising an ion plus the part of the continuum electrons, wh
helps to shield that particular ionic charge, such as
‘‘atom,’’ i.e., a neutral atomic system. Though this particul
9-3
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C. BLANCARD AND G. FAUSSURIER PHYSICAL REVIEW E69, 016409 ~2004!
ion will not be screened by the same continuum electr
during its motion, there will be a fraction of the free ele
trons that will shield this particular ion on average, in t
sense of the statistical mechanics. So, it seems possib
consider a plasma as being constructed by such virtual at
or neutral pseudoatoms. We come thus naturally to our
ond assumption that all atoms in the system have the s
electronic structure. This means that we do not yet discri
nate the different charge stages of the plasma. Conseque
we introduce the following unperturbed Hamiltonian ope
tor:

Ĥe05(
j

(
n

«nâjn
† âjn , ~13!

where âjn
† and âjn are creation and annihilation operato

acting on quantum staten in the j th ion and satisfy the anti
commutation relations~A5! and ~A6! in Appendix A. Equa-
tion ~A5! means that two electrons are independent of e
other when the first electron is in one ion and the second i
another ion. Since we suppose that neutral pseudoatom
not interact with each other, the trial one-electron energy«n
does not depend on labelj. Neglecting relativistic effects
one-electron wave functionwn(r ) and energy«n are solu-
tions of a Schro¨dinger equation with a central symmetr
effective potentialve f f(r ):

F2
\2¹2

2m
1ve f f~r !Gwn~r !5«nwn~r !. ~14!

The trial potential ve f f(r ) must be determined self
consistently but is still unknown at the stage of this wo
Once chosenĤe0, the thermal average of the Hamiltonia
Ĥe , written in the second-quantification formalism, can
performed using the eigenstates ofĤe0; both Ve0 and ^Ĥe

2Ĥe0&e0 can be obtained in closed form. The derivation
detailed in Appendix A. The final result reads

^Ĥe2Ĥe0&e05NIFEX~0!2
e2

2 E E re~r !re~r 8!

ur2r 8u
drdr 8G

1NIF E re~r !vat~r !dr2E re~r !ve f f~r !dr G
1

1

2 (
iÞ j

F2
ZI

2e2

uRj i u
1F~Rj i !G ~15!

and

Ve052
NI

b (
n

ln@11e2b(«n2me)#, ~16!

where

vat~r !52
ZIe

2

ur u
1e2E re~r 8!

ur2r 8u
dr 8, ~17!

and
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F~R!52EX~R!2ZIvat~R!1E re~r !vat~r2R!dr .

~18!

The NPA electronic densityre(r ) is equal to

re~r !5(
n

f nuwn~r !u2, ~19!

where

f n5
1

11eb(«n2me)
, ~20!

and with

E re~r !dr5ZI ~21!

to ensure charge conservation. This is accomplished by
justing the electronic chemical potentialme . EX(R) is the
exchange energy coming from two groups of electrons
longing to different ions, one placed at the origin and t
other atR. What is important to note is the precise canc
lation of the bare nuclear electrostatic interactionVII due to
screening. Indeed, the one-electron HamiltonianĤe0, where
the overlap of eigenfunctions between two different atom
sites is neglected, naturally induces an effective two-bo
ion-ion potentialF(Rj i ) depending on the relative distanc
between ionsi andj. Moreover, these are the only terms th
are functions of nucleus positions due to the effective se
ration between ionic and electronic degrees of freedom.
serting Eqs.~15! and ~16! inside Eq. ~12!, the trace over
nucleus positions only concerns terms involving the effect
ion-ion potential. This multidimensional integral has a ve
clear physical interpretation. From the theory of simple l
uids @22#, we know that

trIFexpS 2
b

2 (
iÞ j

F~Rj i ! D G5e2bFF
ex

, ~22!

whereFF
ex is the excess free energy of the system ofNI ions

interacting via the pairwise effective interaction potent
F(R). We thus find the expression on which the GBI will b
applied,

Vsys

NI
<V I1Ve , ~23!

whereV I andVe may be interpreted as the ionic and ele
tronic contributions to the grand potential per nucleus, i.e

V I5
FI

id

NI
1

FF
ex

NI
2m I ~24!

and
9-4
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Ve52
1

b (
n

ln@11e2b(«n2me)#1EX~0!

2
e2

2 E E re~r !re~r 8!

ur2r 8u
drdr 81E re~r !vat~r !dr

2E re~r !ve f f~r !dr . ~25!

At this stage, we have a relatively compact expression
the grand potential of the systemVsys, in which the only
unknown is the NPA electronic densityre . Once determined
so are the effective potentialve f f , the electronic contribution
Ve , and the effective ion-ion potential, but not the exce
free energyFF

ex . This is a serious and crucial drawback b
cause we need to know this quantity to calculate the t
free energy of the system, and by extension, the bulk eq
tion of state. This delicate question has been a recurrent
difficult task for many years in the theory of simple liquid
@21,22#. The simplest strategy is to apply the GBI to the ion
contributionFF

ex too. Though many systems can be used
reference systems, the number of choices is drastically
duced if we take into account the constraints that suc
reference system should obey in order to test the GBI e
ciently. We must have access to the excess free energy
excess internal energy, and the radial pair-correlation fu
tion over the entire fluid domain. Moreover, the main tran
port coefficients, i.e., self-diffusion, shear viscosity, and th
mal conductivity, must be known analytically in the sam
conditions. To our knowledge, the HS and the OCP syste
are the only many-body systems that can pass this test
can be selected as two possible reference systems@23#. Let
us denoteFre f

ex (l), Ure f
ex (l), gre f(l,R), andF re f(l,R) the

excess free energy, the excess internal energy, the radia
distribution function, and the pair potential of the referen
system. We assume that this reference system can be
scribed by a generic parameterl. Extension to many param
eter case raises no problem. As shown in Appendix B,
GBI applied this time toFF

ex leads to

FF
ex<Fre f

ex ~l!2Ure f
ex ~l!1

NIr I

2 E gre f~l,R!F~R!dR.

~26!

Care must be taken when a OCP system is employed du
the neutralizing background always implicitly assumed
this kind of system. So, we have an upper bound toV I using
this inequality. Finally,

Vsys

NI
<

FI
id1Fre f

ex ~l!2Ure f
ex ~l!

NI

1
r I

2 E gre f~l,R!F~R!dR2m I1Ve . ~27!

Introducing the total free energy per NPA of the systemFtot
as
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Ftot5
FI

id1Fre f
ex ~l!2Ure f

ex ~l!

NI

1
r I

2 E gre f~l,R!F~R!dR1Ve1ZIme , ~28!

the GBI for ions~electrons! says thatFtot is minimum for
any variation ofl (re) at fixedT, NI , ZI , V, andre (l). As
shown in Appendix C,

]Ftot

]l
50 ~29!

leads to

r I

2 E ]gre f~le f f ,R!

]l
@F~R!2F re f~le f f ,R!#dR50,

~30!

whereas

dFtot

dre~r !
50 ~31!

leads to

ve f f~r !5vat~r !1
dEX~0!

dre~r !
1r IE Fvat~r2R!1

dEX~R!

dre~r ! G
3gre f~l,R!dR. ~32!

Equations~30! and ~32! determine the effective paramete
le f f of the reference ionic system and the effective electr
ion potentialve f f , respectively. Equation~30! is rather stan-
dard. Equation~32! needs some comments. The electrosta
part results in a simple charge superposition. This means
to calculate the electrostatic potential at a given radius,
only need to add the electrostatic potential of the NPA
cated at the origin and the electrostatic potential of the ot
NPA of the plasma, with the conditional probability th
there is a NPA at the origin, hence the presence of the
distribution functiongre f(l,R). The exchange contribution
is more complicated to interpret, except if we consider
DFT in the LDA, where a similar conclusion may be draw
using the exchange potential. Indeed, this exchange co
bution is also the most delicate one to calculate, simply
computational time reasons. As for electrons, we ha
adopted the numerical schemes of the DFT in the LDA p
posed by Iyetomi and Ichimaru@24# at finite temperature and
by Perdew and Wang@25# at zero temperature. Thes
schemes have been implemented after intensive compari
with experiments. As for consistency, we have kept the sa
approach for ions using the Gordon and Kim@26# method to
estimate the exchange contribution within the effective io
pair potential.

The whole equations obtained up to now are exact in
sense of the variational GBI method using the trial on
electron HamiltonianHe0 and the reference ionic system
One understands that choosing both otherHe0 and reference
ionic systems to improve the description of physics will le
9-5
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C. BLANCARD AND G. FAUSSURIER PHYSICAL REVIEW E69, 016409 ~2004!
to different equations but the cornerstone of the formalis
i.e., the GBI approach, remains the same. It is very inter
ing and encouraging, because one does not have to ch
the complete theoretical formalism to add new effects, if
keep the GBI method of course. Assumptions have b
clearly enhanced; improvements are easily localizable,
this does not mean that their implementations are straigh
ward. However, as already apparent here, two main probl
will quickly arise, i.e., the mapping between the effecti
ion-ion potential and the pair distribution function that a
lows the calculation of the ionic part of the free energy a
the question of exchange and correlation. Before improv
physics with the inclusion of new effects, we think that w
must keep in mind the two aforementioned difficulties,
order to obtain computationally tractable equations to co
pare to experiment. This can be done either for equation
state or transport coefficients.

B. Equation of state

The entire formalism presented up to now has been im
mented in the SCAALP model in order to describe the m
croscopic properties of dense media. Once the NPA e
tronic densityre and the effective parameterle f f of the ionic
reference system have been determined, it is a simple ta
calculate the total free energy of the systemFtot using Eqs.
~25! and~28!. Nearly the whole thermodynamic quantities
interest may be obtained by simple differentiation ofFtot
with respect to temperatureT and volumeV ~or mass density
r). For instance, internal energyU, pressureP, and entropy
S are given by the standard expressions

U5Ftot2T
]Ftot

]T U
V

5
]~bFtot!

]b U
V

,

P5
]Ftot

]V U
T

,

S52
]Ftot

]T U
V

. ~33!

Another very important quantity is sound speedcS , which
can be calculated from the formula

cS5A]P

]r U
T

1
~]S/]r!uT

~]S/]T!ur

]P

]TU
r

. ~34!

Indeed, since our model is thermodynamically se
consistent, we know that internal energyU and pressureP
satisfy the fundamental equation

]U

]V U
T

5T
]P

]TU
V

2P. ~35!

A large amount of work has been done to solve numeric
the self-consistent mean-field equations of the SCAA
model in order to respect Eq.~35!. This is achieved by the
severe constraints concerning the convergence param
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and the use of Chebyshev polynomials@27#. It can be seen
that any model incapable of passing this test is definit
incorrect.

C. Transport coefficients

Transport coefficients such as self-diffusion, viscos
thermal conductivity, or electrical conductivity are the mo
fundamental dynamical parameters that reflect the natur
the interparticle potentials and characterize the thermo
namics of the system. A theory developed to describe
bulk thermodynamic equilibrium properties is not usua
guaranteed to be particularly capable of predicting dyna
properties of systems, such as transport coefficients. Sinc
our model, ions form a classical system of particles intera
ing via an effective pairwise potentialF, we could use clas-
sical molecular dynamics as a postprocessor to estim
transport coefficients using well-known techniques fro
simple liquid theory. However, following recent studie
made on the Yukawa one-component plasma~YOCP! sys-
tem, we estimate the self-diffusion, the shear viscosity, a
the thermal conductivity of dense plasmas from the transp
coefficients of the ionic reference system~HS or OCP! @23#.
Moreover, we also recommend the use of the elegant me
proposed by Rosenfeld, which relates the transport coe
cients to the equation of state@28,29#. This approach consist
of using a semiempirical universal corresponding-state r
tionship, for the dimensionless transport coefficients of de
fluids as functions of the reduced configurational entro
The same author has extended this technique to dilute flu
established by many simulations. The Rosenfeld approac
powerful for many reasons. First, an accurate, theoretic
based approach to dense-fluid transport coefficients is
lacking. Second, no convergent perturbation theory of tra
port coefficients has been established. Third, the brute-fo
computer methods can be used to estimate transport co
cients, but these methods are considerably too time cons
ing, for the same accuracy, than those designed to mea
equilibrium properties and cannot be considered as bla
box routines. Fourth, this analytical relation between tra
port coefficients and excess entropy allows us to estim
for instance, self-diffusion, shear viscosity, and thermal c
ductivity from the equation of state of monoatomic fluid
with arbitrary pair potentials. In summary, one realizes
the benefits of the Rosenfeld approach to estimate trans
coefficients knowing only the excess entropy of the syst
of interest. This method is as useful as Enskog’s origi
recipe relating transport coefficients to thermal pressure.
tails and the whole formulas of interest can be found in R
@23#, where such methods have been extensively applied
discussed.

Many and well-characterized experiments using either
ploded wires or isochoric plasma closed vessel have b
performed for electrical resistivity. Since in these regim
electrical conduction mostly originates from electrons,
consider it interesting and valuable to calculate also e
tronic electrical resistivity with the SCAALP model. Th
simplest plasma resistivity calculations use the Spitzer
mula, which make use of many simplifying assumption
9-6
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EQUATION OF STATE AND TRANSPORT . . . PHYSICAL REVIEW E 69, 016409 ~2004!
such as the Saha theory in hot plasma physics. Some o
approaches have been proposed to calculate resistivity
any kind of plasmas. However, most of these models w
intended to facilitate on-line hydrocode calculations. Sin
we are rather interested in anab initio and microscopic ap-
proach, we have adopted the extension of the Ziman form
to finite temperature. Our method is similar to the one p
posed by Perrot and Dharma-wardana@30,14#. This method
has been discussed at length so we will not elaborate
further. Any readers who are interested should consult
original papers. Indeed, results obtained with this meth
should be considered as a good first approximation requi
further corrections depending on specific experimental c
ditions. Since the Ziman formula corresponds to the simp
variational solution of a transport equation, higher-ord
terms arising from other basis functions become importan
certain problems. This must be the case, for instance,
nearly neutral plasmas where the Ziman formula is expec
to be too rustic in such conditions. Calculating some ot
linear transport properties, such as thermal conductivity
then simple to carry out and will not be considered here@18#.

III. COMPARISONS TO EXPERIMENT

In this section, we test the accuracy of the SCAA
model by comparing its predictions to experimental resu
We have chosen to concentrate first on aluminum. Many
perimental data concerning equation of state~EOS! quanti-
ties and electronic electrical conductivity are available
this simple metal. Its EOS is often considered to be an ac
rate standard for EOS studies. However, the exact evalua
of thermodynamic properties may be very difficult to obta
even for such a ‘‘simple’’ material@12#. From a theoretical
point of view, no theory exists that can describe the b
properties over the entire temperature-density plane.
Sesame EOS for aluminum consists, for instance, in a pa
work of subregions covered by various theories. There is
area which is not addressed by any theory. It is only acces
by numerical interpolation from the adjacent regions wh
data are available. The ‘‘unknown’’ area, roughly defined
0.1,r,2 g cm23 and 1,T,50 eV, is such that the
plasma is strongly coupled@11#. For aluminum, this area
belongs to the warm dense matter field. This is a reg
between solid and plasma, where the description of phy
is complicated due to the strong interaction between p
ticles, i.e., ions and electrons. It is only recently that expe
mental data become available in order to validate calc
tions in these particular thermodynamic conditions.

The SCAALP model is tested first in the cold dense
gime relevant to solid state physics. Of course, our mo
designed to describe the properties of plasmas, is not
pected to give an accurate description of bulk properties
this domain. However, it is interesting to see how SCAA
behaves when it progressively leaves its domain of valid
i.e., decreasing temperature to go from plasma to solid.
have plotted in Fig. 1 the cold compression curve consid
ing SCAALP and three other theories of increasing accura
i.e., quotidian equation of State~QEOS! @31#, embedded
atom model~EAM! @32#, and all electron method@33,34#,
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respectively. Experimental data points@35,36# are also given.
We see that the overall behavior of SCAALP is good. T
excellent agreement at high compression with TFD was
pected to prevaila priori but the fair agreement with solid
state physics, i.e., EAM or all electron model at low dens
is rather encouraging. This indicates that we may be co
dent concerning the predictions of the SCAALP model in t
boundary domain between solid state physics and pla
physics.

The aluminum equation of state at high pressure is inv
tigated with SCAALP by calculating the Hugoniot curv
starting from normal condition of temperature and pressu
i.e., 300 K and solid density. The Hugoniot curve obtain
with the SCAALP model is compared to Sesame, QEOS,
experimental data@37# in Fig. 2. We can see that SCAALP
results are as accurate as EOS data table and semiemp
models. Moreover, they emphasize the thermodynamic
main where the Hugoniot curve strongly depends on e
tronic structure, i.e., beyond four times solid density whe

FIG. 1. Aluminum cold compression curve considerin
SCAALP, Quotidian equation of state~QEOS! @31#, embedded
atom model~EAM! @32#, all electron method@33,34#, and experi-
mental data points@35,36#.

FIG. 2. Aluminum Hugoniot predictions using SCAALP, Quo
tidian equation of state~QEOS! @31#, and Sesame@10,11# ~S3718!
are compared to experimental data@37#.
9-7
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the double shoulder corresponds to ionization ofL and K
shells, respectively. We have checked that the Hugo
curve tends to the classical limit equal to four times so
density at very high pressure. The cause of these shoulde
well known @38#. They correspond to the competition b
tween the release of energy stocked as internal energy w
the shell and the pressure of free electrons. When ioniza
begins, the energy of the shock is used mainly to depopu
the relevant shells and the material is very compress
However, the pressure of free electrons in increasing num
finally dominates again and the material becomes more
ficult to compress.

In Fig. 3 we compare the electronic electrical resistiv
calculated by SCAALP in the conditions of the experime
performed by Benageet al. @4#. This experiment is very in-
teresting because the thermodynamic path inside the diag
density temperature starts in the supposedly w
characterized plasma phase, i.e., high temperature and
density, crosses the entire unknown interpolated region,
ends in another well-determined liquid-metal phase, i.e.,
temperature and nearly solid density. SCAALP predictio
are very good at low and high temperature, and the gen
tendency of the experimental curve is well reproduced. T
same trend is found by Perrot and Dharma-wardana~PDW!
@30#, though the disagreement at low temperature with
perimental data is more pronounced. However, neit
SCAALP nor PDW can describe the finer structure arou
0.2 g cm23. This is quite surprising because this part isa
priori not the most difficult one to describe, from a theor
ical point of view @39#.

The Hugoniot curve and the experiment of Benageet al.
@4# were done by varying both temperature and density
breakthrough in the field was made recently by the E
group, who performed isochore measurements of press
internal energy variation, and electrical resistivity of an a
minum plasma at 0.1 g cm23 in the warm dense matter re
gime @8,9#. The originality of the work consists of recordin
two equation of state quantities and one transport coeffic

FIG. 3. Electrical resistivity of aluminum as a function of de
sity. SCAALP and Perrot and Dharma-wardana~PDW! @30# calcu-
lations are compared to experimental data@4#. Temperature is
scaled on the upper axis to show the conditions of the aluminum
these measurements.
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simultaneously. This major advance constitutes a string
experimental constraint for any model designed to desc
strongly coupled plasmas because the warm dense regim
the key point for testing the consistency between liquid me
and hot plasma treatments. As for equation of state, we se
Fig. 4 that SCAALP results agree well with experimen
values. In the EPI regime, QEOS is not very accurate but
fact was already known. The most surprising result is
discrepancy between quantum molecular dynamics~QMD!
calculations and EPI data. In fact, in the regime of partia
ionized plasmas, the equation of state predictions obtai
from QMD are as accurate as the results from the inter
lated Sesame tables. As for electrical resistivity, we see
Fig. 5 that the agreement of SCAALP with the experimen
excellent, either concerning the EPI measurements or the
ploded wire measurements@2,3#. This is good news, with
regard to the simplicity of our approach based on the Zim
formula, which is known to be too crude in nearly neutr

or

FIG. 4. Pressure of aluminum at a density of 0.1 g cm23 as a
function of internal energy variation. Theoretical results from fi
EOS models are compared to experimental data@9#.

FIG. 5. Electrical resistivities of aluminum at 0.1 g cm23 calcu-
lated by SCAALP and by Perrot and Dharma-wardana~PDW! @30#
are compared to experimental data@2–4,8#.
9-8
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EQUATION OF STATE AND TRANSPORT . . . PHYSICAL REVIEW E 69, 016409 ~2004!
media @40,41#. As for the approach of Perrot and Dharm
wardana, SCAALP and PDW calculations are very clos
except at lower temperature where PDW calculations di
from the resistivity measured by the exploded wire te
nique.

We end this section by comparing SCAALP electron
density estimates to measurements for a beryllium plasm
solid density@42# in Fig. 6. From these experiments, the ra
of delocalized to localized electronic densities can be
tained from the analysis of x-ray Thomson scattering. At l
temperature, the agreement between SCAALP, ACT
@43,44#, the Perrot and Dharma-wardana’s approach@45#,
and experimental results is good. In these conditio
SCAALP predicts a density of states perturbed by resonan
due to quasibound states. Predictions of all these fi
principles but different models are similar and close to
perimental results.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented anab initio and compu-
tationable model to describe the thermodynamic and tra
port properties of dense plasmas. The electronic and io
structures are determined solving mean-field equatio
which are deduced from a variational approach based on
Gibbs-Bogolyubov inequality. This ensures a self-consist
treatment between the electronic structure, found solving
effective one-electron Schro¨dinger equation using the densi
functional theory within the framework of the local densi
approximation, and the ionic distribution, found from th
Gibbs-Bogolyubov inequality employing OCP or HS as r
erence system. Confrontation between theoretical and ex
mental results available in the literature of dense plasm
i.e., cold curve, Hugoniot curve, ionization, electrical res
tivity, and calorific properties, shows that SCAALP pred
tions are good.

We could also proceed from spherical to nonspher

FIG. 6. Density-temperature phase diagram along with result
the x-ray scattering measurements and simulation using the AC
model@43,44#, the Perrot and Dharma-wardana model~PDW! @45#,
and the SCAALP model.
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symmetry, and consider the treatment of molecules or c
ters. Derivation of equations is tedious but relatively simp
to obtain. It is just a matter of algebra, once settled the ov
all theoretical framework. The use of a ionic reference s
tem could also be bypassed, connecting directly the pair
tribution to the effective ion-ion potential using Monte Car
or molecular dynamics simulations. These techniques
very powerful and many interesting results have been
tained with them. However, they are not black-box alg
rithms and we think it is unrealistic to try to implement the
inside the convergence process. However, they could b
great utility once achieved the overall convergence of
SCAALP process, i.e., as postprocessors for some partic
diagnostics~microfield distribution, nearest-neighbor distr
bution, dynamic structure factor, transport coefficients!.

ACKNOWLEDGMENTS

We thank D. Gogny, S. Kiyokawa, and R. M. More fo
helpful discussions, P. Renaudin for extensive and car
use of SCAALP, figures of this paper, as well as for h
constructive remarks, comments, and constant suppor
each development phase of this work, and A. Greene for
careful reading of the document.

APPENDIX A: STATISTICAL AVERAGE
USING ONE-ELECTRON HAMILTONIAN

In this appendix, we are going to calculate the therm
averagê Ĥe&e0 of the electronic Hamiltonian partĤe of the
total Hamiltonian of the system given in Eq.~3!, using the
eigenstates of the one-electron HamiltonianĤe0 @19,46,20#.
We recall that

^$•••%&e05
Tre@e2b(Ĥe02meN̂e)$•••%#

e2bVe0
,

e2bVe05Tre@e2b(Ĥe02meN̂e)#, ~A1!

whereN̂e is the electron number operator,b the inverse tem-
perature, andme the electronic chemical potential. Startin
from Eq. ~3!, it is easy to find a more convenient expressi
of Ĥe using second-quantification operator algebra,

Ĥe5E Ĉ†~r !h~r ,$R%!Ĉ~r !dr ,

1
1

2E E Ĉ†~r !Ĉ†~r 8!
e2

ur2r 8u
Ĉ~r 8!Ĉ~r !drdr 8,

~A2!

with

h~r ,$R%!52
\2¹2

2m
2(

j

ZIe
2

ur2Rj u
, ~A3!

and where the electronic field operatorĈ(r ), which is a
function of electron and nuclei positions, can be written a

of
X

9-9
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Ĉ~r !5(
j

(
n

wn~r2Rj !âjn . ~A4!

âjn is the annihilation operator acting on an electron with
quantum staten in the j th ion. These operators verify th
following anticommutation relations:

$âin
† ,âjm%5d i j dnm , ~A5!

$âin
† ,âjm

† %5$âin ,âjm%50. ~A6!

Equation~A5! means that two electrons are independent
each other when one electron is in an ion and the other i
another one. Thus,Ĥe can be rewritten as

Ĥe5(
i , j

(
n,m

E wn* ~r2Ri !h~r ,$R%!wm~r2Ri !drâ in
† âjm

1
1

2 (
i , j ,k,l

(
n1 ,n2 ,n3 ,n4

E E wn
1*
~r2Ri !wn

2*
~r 82Rj !

3
e2

ur2r 8u
wn3

~r 82Rk!wn4
~r2Rl !drdr 8âin1

† âjn2

† âkn3
âln4

~A7!

Let us introduce the unperturbed Hamiltonian operatorĤe0:

Ĥe05(
j

(
n

«nâjn
† âjn . ~A8!

Since we assume that neutral ‘‘atoms’’ of the whole unp
turbed Hamiltonian do not interact with each other, the o
electron energy«n logically does not depend on labelj. The
one-electron wave functionwn(r ) and energy«n are solu-
tions of a Schro¨dinger equation with a central symmetr
effective potentialve f f(r ):

F2
\2¹2

2m
1ve f f~r !Gwn~r !5«nwn~r !. ~A9!

ve f f(r ), still unknown, must be determined self-consisten
as will be seen below. The thermal average of the Ham
tonian Ĥe can be performed using the eigenstates ofĤe0.
Derivation is standard but quite tedious. It can be hig
simplified if we use the thermal average of a product of t
operators:

^âin
† âjm&5 f nd i j dnm , ~A10!

where f n is given by

f n5
1

exp„@b~«n2me!#11…
, ~A11!

and the Wick’s theorem to reduce the four operator expe
tion values,
01640
f
in

-
-

l-

y

a-

^âin1

† âjn2

† âkn3
âln4

&52d ikdn1n3
d j l dn2n4

f n1
f n2

1d i l dn1n4
d jkdn2n3

f n1
f n2

. ~A12!

The thermal average of the HamiltonianĤe is then calcu-
lated as follows:

^Ĥe&e05(
i

(
n
E wn* ~r2Ri !h~r ,$R%!wn~r2Ri !dr f n

1
1

2 (
i , j

(
n1 ,n2

E E wn
1*
~r2Ri !wn

2*
~r 82Rj !

3
e2

ur2r 8u
wn2

~r 82Rj !wn1
~r2Ri !drdr 8 f n1

f n2

2
1

2 (
i , j

(
n1 ,n2

E E wn
1*
~r2Ri !wn

2*
~r 82Rj !

3
e2

ur2r 8u
wn1

~r 82Ri !wn2
~r2Rj !drdr 8 f n1

f n2
,

~A13!

or, by using Eq.~A3!,

^Ĥe&e05(
i

(
n
E wn* ~r2Ri !F2

\2¹2

2m
2(

j

ZIe
2

ur2Rj uG
3wn~r2Ri !dr f n1

1

2 (
i , j

(
n1 ,n2

E E wn
1*
~r2Ri !

3wn
2*
~r 82Rj !

e2

ur2r 8u
wn2

~r 82Rj !wn1
~r2Ri !

3drdr 8 f n1
f n2

2
1

2 (
i , j

(
n1 ,n2

E E wn
1*
~r2Ri !

3wn
2*
~r 82Rj !

e2

ur2r 8u
wn1

~r 82Ri !wn2
~r2Rj !

3drdr 8 f n1
f n2

. ~A14!

We simply find a finite-temperature Hartree-Fock express
for ^Ĥe&e0, with additional terms arising from the variou
nuclei of the system. As“ acts only on electron coordinate
we defineKe as the electron kinetic energy~calculated at
Ri50):

Ke52E (
n

f nwn* ~r !
\2¹2

2m
wn~r !dr . ~A15!

It is thus quite natural to introduce

re~r !5(
n

f nwn* ~r !wn~r !. ~A16!

Since thewn(r ) are the same for all neutral atoms,
9-10
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^Ĥe&e05NIKe2(
i , j

ZIe
2E re~r2Ri !

ur2Rj u
dr

1
e2

2 (
i , j

E E re~r2Ri !re~r 82Rj !

ur2r 8u
drdr 8

2
1

2 (
i

(
n1 ,n2

E E wn
1*
~r2Ri !wn

2*
~r 82Ri !

3
e2

ur2r 8u
wn1

~r 82Ri !wn2
~r2Ri !drdr 8 f n1

f n2

2
1

2 (
iÞ j

(
n1 ,n2

E E wn
1*
~r2Ri !wn

2*
~r 82Rj !

3
e2

ur2r 8u
wn1

~r 82Ri !wn2
~r2Rj !drdr 8 f n1

f n2
.

~A17!

Using r̃5r2Ri , r̃ 85r 82Ri , andRj i 5Rj2Ri ,

^Ĥe&e05NIKe2(
i , j

ZIe
2E re~r2Ri !

ur2Rj u
dr

1
e2

2 (
i , j

E E re~r2Ri !re~r 82Rj !

ur2r 8u
drdr 8

2
1

2 (
i

(
n1 ,n2

E E wn
1*
~ r̃ !wn

2*
~ r̃ 8!

e2

u r̃2 r̃ 8u

3wn1
~ r̃ 8!wn2

~ r̃ !d r̃d r̃ 8 f n1
f n2

2
1

2 (
iÞ j

(
n1 ,n2

E E wn
1*
~ r̃ !wn

2*
~ r̃ 82Rj i !

3
e2

u r̃2 r̃ 8u
wn1

~ r̃ 8!wn2
~ r̃2Rj i !d r̃d r̃ 8 f n1

f n2
. ~A18!

The fourth and fifth terms on the right-hand side of the abo
equation are the exchange energyEX(Rj i 50) and EX(Rj i

Þ0), respectively.̂ Ĥe& can be put into a more compa
form,

^Ĥe&e05NIKe1NIEX~0!1(
iÞ j

EX~Rj i !

2(
i

ZIe
2E re~ r̃ !

u r̃ u
d r̃

1
e2

2 (
i
E E re~ r̃ !re~ r̃ 8!

u r̃2 r̃ 8u
d r̃d r̃ 8

2(
iÞ j

ZIe
2E re~r2Ri !

ur2Rj u
dr

1
e2

2 (
iÞ j

E E re~r2Ri !re~r 82Rj !

ur2r 8u
drdr 8 ~A19!
01640
e

The fourth and fifth terms on the right-hand side of the abo
equation do not depend on labeli:

^Ĥe&e05NIFKe1EX~0!2ZIe
2E re~ r̃ !

u r̃ u
d r̃

1
e2

2 E E re~ r̃ !re~ r̃ 8!

u r̃2 r̃ 8u
d r̃d r̃ 8G

1
1

2 (
iÞ j

F2EX~Rj i !22ZIe
2E re~r2Ri !

ur2Rj u
dr

1e2E E re~r2Ri !re~r 82Rj !

ur2r 8u
drdr 8G . ~A20!

The part of the above equation that depends on nucleus
sitions can be rewritten as~with r̃ 85r 82Rj ):

2EX~Rj i !2
ZI

2e2

uRj i u
1

ZI
2e2

uRj i u
22ZIe

2E re~ r̃ !

u r̃2Rj i u
d r̃

1e2E E re~r2Ri !re~r 82Rj !

ur2r 8u
drdr 8

52EX~Rj i !2
ZI

2e2

uRj i u
2ZIF2

ZIe
2

uRj i u
1e2E re~ r̃ !

uRj i 2 r̃ u
d r̃ G

2ZIe
2E re~ r̃ !

u r̃2Rj i u
d r̃1e2E E re~ r̃ !re~ r̃ 8!

u r̃2Rj i 2 r̃ 8u
d r̃d r̃ 8

52EX~Rj i !2
ZI

2e2

uRj i u
2ZIvat~Rj i !1E re~ r̃ !vat~ r̃2Rj i !,

~A21!

where

vat~r !52
ZIe

2

ur u
1e2E re~r 8!

ur2r 8u
. ~A22!

Finally, the thermal average of the HamiltonianĤe verifies

^Ĥe&e05NIFKe1EX~0!2ZIe
2E re~ r̃ !

u r̃ u
d r̃

1
e2

2 E E re~ r̃ !re~ r̃ 8!

u r̃2 r̃ 8u
d r̃d r̃ 8G

1
1

2 (
iÞ j

F2
ZI

2e2

uRj i u
1F~Rj i !G , ~A23!

where

F~R!52EX~R!2ZIvat~R!1E re~ r̃ !vat~ r̃2R!d r̃ .

~A24!

The thermal averagêĤe0&e0 of the one-electron Hamil-
tonianĤe0 reads
9-11
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^Ĥe0&e05NI(
n

«nf n . ~A25!

Furthermore, using the second identity of Eq.~A1!,

Ve052
NI

b (
n

ln@11e2b(«n2me)#. ~A26!

Indeed, multiplying Eq.~A9! by f nwn* (r ) on the left, inte-
grating overr , and using Eq.~A16!, the kinetic energyKe
given by Eq.~A15! can also be expressed as

Ke5(
n

«nf n2E ve f f~r !re~r !dr . ~A27!

Finally, combining Eqs.~A23!, ~A25!, and~A27! leads natu-
rally to the working formula for the thermal average^Ĥe

2Ĥe0&e0, i.e.,

^Ĥe2Ĥe0&e05NIFEX~0!2
e2

2 E E re~ r̃ !re~ r̃ 8!

u r̃2 r̃ 8u
d r̃d r̃ 8G

1NIF E re~ r̃ !vat~ r̃ !d r̃2E re~ r̃ !ve f f~ r̃ !d r̃ G
1

1

2 (
iÞ j

F2
ZI

2e2

uRj i u
1F~Rj i !G , ~A28!

which is simply Eq.~15!.

APPENDIX B: STATISTICAL AVERAGE USING IONIC
REFERENCE SYSTEM

In this appendix, we are going to derive Eq.~26! starting
from Eq. ~22!. The proof is in fact a strict application of th
GBI to simple fluid interacting through pair potenti
@22,23#. We want just to focus on some tricky terms arisi
due to the presence of a neutralizing background in the
erence system. So, let us start from Eq.~22!, which gives the
excess free energy of a system ofNI particles interacting
through a two-body potentialF(R),

trIFexpS 2
b

2 (
iÞ j

F~Rj i ! D G5e2bFF
ex

, ~B1!

where

trI$•••%5E dNIR

VNI
$•••%. ~B2!

Let us suppose that we have a reference system ofNI par-
ticles interacting via a two-body potentialF re f(l,Ri ,Rj),
for which the excess free energyFre f

ex (l), the excess interna
energyUre f

ex (l), and the pair distributiongre f(l,Ri ,Rj) are
known. Note that we do not implicitly assume that the int
action depends only on the relative distance between
ticles. We can thus insert in Eq.~B1! 6F re f(l,Ri ,Rj) near
F(Rj i ). Then, using
01640
f-

-
r-

^$•••%&l5

TreFexpS 2
b

2 (
iÞ j

F re f~l,Ri ,Rj !$•••% D G
e2bFre f

ex (l)
,

e2bFre f
ex (l)5trIFexpS 2

b

2 (
iÞ j

F re f~l,Ri ,Rj ! D G , ~B3!

and the well-known property

K expS 2
b

2 (
iÞ j

@F~Ri j !2F re f~l,Ri ,Rj !# D L
l

>expS 2K b

2 (
iÞ j

@F~Ri j !2F re f~l,Ri ,Rj !#L
l
D , ~B4!

we have

FF
ex<Fre f

ex ~l!1K 1

2 (
iÞ j

@F~Ri j !2F re f~l,Ri ,Rj !#L
l

.

~B5!

Since

Ure f
ex ~l!5K 1

2 (
iÞ j

F re f~l,Ri ,Rj !L
l

, ~B6!

we are left with

FF
ex<Fre f

ex ~l!2Ure f
ex ~l!1K 1

2 (
iÞ j

@F~Ri j !#L
l

. ~B7!

Now, let us introduce the two-particle densityd (2)(R,R8),

d (2)~R,R8!5(
iÞ j

d~ uR2Ri u!d~ uR82Rj u!, ~B8!

then

K 1

2 (
iÞ j

@F~Ri j !#L
l

5
1

2E dRdR8F~R2R8!^d (2)~R,R8!&l

~B9!

or

K 1

2 (
iÞ j

@F~Ri j !#L
l

5
r I

2

2 E dRdR8F~R2R8!gre f~l,R,R8!

~B10!

using the definition of thegre f(l,R,R8), namely,

r I
2gre f~l,R,R8!5^d (2)~R,R8!&l . ~B11!

As a consequence,

FF
ex<Fre f

ex ~l!2Ure f
ex ~l!1

r I
2

2 E dRdR8

3F~R2R8!gre f~l,R,R8!. ~B12!
9-12
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The right-hand side is an exact result. Our main approxim
tion concerns the choice of the reference system. Since
original system is isotropic and homogenous, i.e.,F depends
only on the relative distance between particles, it is reas
able to choose a reference system with the same propert
that case,

gre f~l,R,R8!5gre f~l,R2R8!, ~B13!

and we find Eq.~26!,

FF
ex<Fre f

ex ~l!2Ure f
ex ~l!1

NIr I

2 E dRF~R!gre f~l,R!.

~B14!

When no background is included in the reference system
instance HS system, then

Ure f
ex ~l!5

NIr I

2 E dRF~l,R!gre f~l,R!. ~B15!

However, when in the reference system, the particles do
simply interact throughF(l,R), but with a homogeneou
neutralizing background; one must also take into account
background-background interaction and some zero-en
reference too. This is a typical situation encountered with
YOCP system. In that case, one can show that

Ure f
ex ~G,k!5

NIr I

2 E dRF~G,k,R!hre f~G,k,R!2
NI

b

Gk

2
.

~B16!

We have thus two independent parametersG and k. When
YOCP reduces to OCP~k50!, which is the only case con
sidered in this work for the reasons explained above in
main text, we simply have the general form

Ure f
ex ~l!5

NIr I

2 E dRF~l,R!hre f~l,R!. ~B17!

In summary, we use Eq.~B15! without neutralizing back-
ground, but Eq.~B17! with neutralizing background. We giv
the general proof for both cases but only the HS system,
so Eq.~B15! is used for the numerical applications presen
in this paper.

APPENDIX C: MINIMIZATION OF THE TOTAL FREE
ENERGY OF THE SYSTEM

In this appendix, we are going to derive Eqs.~30! and
~32! applying the GBI for the total free energy of the syste
Ftot given by Eqs.~28! and ~25!. The rule is strict but quite
intuitive @46,20#. We are looking for the smallest uppe
boundFtot of the true total free energyFsys5Vsys/NI1m I
1ZIme of the system@19#. To do this, we are going to sepa
rateFtot into two contributions, i.e., an electronic part

Ftot
e 5Ve1ZIme , ~C1!

and an ionic part
01640
-
ur

n-
In

or

ot

e
gy
e

e

nd
d

Ftot
I 5

FI
id1Fre f

ex ~l!2Ure f
ex ~l!

NI
1

r I

2 E dRgre f~l,R!F~R!.

~C2!

Let us consider first the minimization with respect to ele
tronic densityre ,

dFtot

dre~r !
50. ~C3!

As for Ftot
I , only the fourth term on the right-hand side o

Eq. ~C2! depends onre(r ) via F(R), so

dFtot
I

dre~r !
5

r I

2 E dRgre f~l,R!
dF~R!

dre~r !
. ~C4!

Using the definition ofF(R), i.e., Eqs.~18! and ~17!, we
have

dF~R!

dre~r !
52

dEX~R!

dre~r !
2ZI

dvat~R!

dre~r !
1vat~r2R!

1E re~r 8!
dvat~r 82R!

dre~r !
dr 8. ~C5!

From Eq.~17!, we know that

dvat~r 8!

dre~r !
5

e2

ur2r 8u
. ~C6!

Yet, if we restrict ourselves to spherical symmetric proble
i.e.,

vat~r 82R!5vat~ ur 82Ru!5vat~ uR2r 8u!5vat~R2r 8!,

~C7!

we arrive at

dF~R!

dre~r !
52

dEX~R!

dre~r !
2

ZIe
2

ur2Ru
1vat~r2R!

1E re~r 8!
e2

uR2r 82r u
dr 8. ~C8!

However, since

vat~r2R!52
ZIe

2

ur2Ru
1E re~r 8!

e2

uR2r 82r u
dr 8,

~C9!

we get

1

2

dF~R!

dre~r !
5

dEX~R!

dre~r !
1vat~r2R!, ~C10!

which inserted into Eq.~C4! leads to

dFtot
I

dre~r !
5r IE dRgre f~l,R!FdEX~R!

dre~r !
1vat~r2R!G . ~C11!
9-13
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As for Ftot
e given by Eq.~C1!,

dFtot
e

dre~r !
5

dVe

dre~r !
1ZI

dme

dre~r !
. ~C12!

Using Eqs.~25! and ~20!,

dFtot
e

dre~r !
5(

n
f n

d~«n2me!

dre~r !
1

dEX~0!

dre~r !
2e2E re~r 8!

ur2r 8u
dr 8

1ZI

dme

dre~r !
1vat~r !1E re~r 8!

dvat~r 8!

dre~r !
dr 8

2ve f f~r !2E re~r 8!
dve f f~r 8!

dre~r !
dr 8. ~C13!

Using now Eq.~C6! and*re(r )dr5(nf n5ZI ,

dFtot
e

dre~r !
5(

n
f n

d«n

dre~r !
1

dEX~0!

dre~r !
1vat~r !2ve f f~r !

2E re~r 8!
dve f f~r 8!

dre~r !
dr 8. ~C14!

Yet, a straightforward application of first-order perturbati
theory to Eq.~14! leads to

d«n

dre~r !
5E re~r 8!

dve f f~r 8!

dre~r !
dr 8, ~C15!

and

dFtot
e

dre~r !
5

dEX~0!

dre~r !
1vat~r !2ve f f~r !. ~C16!

Equation~C15! can also be obtained directly from Eq.~14!
by noting that eigenfunctionswn(r ) are orthonormal. We
adopt for this example the bra and ket Dirac notation, i
wn(r )5^r un&, ^nun8&5dnn8 . Let us multiply on the left Eq.
~14! by ^nu,

^nu2
\2¹2

2m
1ve f fun&5«n , ~C17!

and differentiate with respect tore(r ). We get

d«n

dre~r !
5

d^nu
dre~r ! F2

\2¹2

2m
1ve f fG un&

1^nu
dF2

\2¹2

2m
1ve f fG

dre~r !
un&

1^nuF2
\2¹2

2m
1ve f fG dun&

dre~r !
, ~C18!
01640
.,

d«n

dre~r !
5

d^nu
dre~r !

un&«n1^nu
dF2

\2¹2

2m
1ve f fG

dre~r !
un&

1«n^nu
dun

dre~r !
, ~C19!

But, since^nun&51,

d^nu
dre~r !

un&50, ~C20!

hence Eq.~C15!. Finally, inserting Eqs.~C11! and~C16! into
the minimum criterium~C3! gives

ve f f~r !5vat~r !1
dEX~0!

dre~r !
1r IE Fvat~r2R!

1
dEX~R!

dre~r ! Ggre f~l,R!dR, ~C21!

which is result~32!.
Let us now consider the minimization with respect to e

fective parameterl,

]Ftot

]l
50. ~C22!

SinceFtot
e is independent ofl, only Ftot

I matters. Using Eq.
~C2!, we have

]Ftot
I

]l
5

1

NI
S ]Fre f

ex

]l
2

]Ure f
ex

]l D 1
r I

2 E dR
]gre f~l,R!

]l
F re f~R!.

~C23!

Using either Eq.~B15! or Eq. ~B17! of precedent paragraph
we get

]Ure f
ex

]l
5

NIr I

2 E dRF]F re f~l,R!

]l
gre f~l,R!

1F re f~l,R!
]gre f~l,R!

]l G . ~C24!

Differentiating with respect tol the second equation of Eq
~B3!, we get

]Fre f
ex

]l
e2bFre f

ex (l)5trIF1

2 (
iÞ j

]F re f~l,Ri ,Rj !

]l

3expS 2
b

2 (
iÞ j

F re f~l,Ri ,Rj ! D G ,
~C25!

or

]Fre f
ex

]l
5K 1

2 (
iÞ j

]F re f~l,Ri ,Rj !

]l L
l

, ~C26!
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remembering the first equation of Eq.~B3!. Since we assume
the reference system to be homogenous and isotropic, we
follow the same reasoning of the last part of Appendix A
arrive at

]Fre f
ex

]l
5

NIr I

2 E dR
]F~l,R!

]l
gre f~l,R!. ~C27!
d

e
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ot,
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Finally, combining Eqs.~C22!–~C24! and ~C27! leads to

r I

2 E dR
]gre f~le f f ,R!

]l
@F~R!2F re f~le f f ,R!#50,

~C28!

which is simply Eq.~30!.
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